Multipliers of locally compact quantum groups via Hilbert C*-modules
نویسنده
چکیده
A result of Gilbert shows that every completely bounded multiplier f of the Fourier algebra A(G) arises from a pair of bounded continuous maps α, β : G → K, where K is a Hilbert space, and f(s−1t) = (β(t)|α(s)) for all s, t ∈ G. We recast this in terms of adjointable operators acting between certain Hilbert C∗-modules, and show that an analogous construction works for completely bounded left multipliers of a locally compact quantum group. We find various ways to deal with right multipliers: one of these involves looking at the opposite quantum group, and this leads to a proof that the (unbounded) antipode acts on the space of completely bounded multipliers in a way that interacts naturally with our representation result. The dual of the universal quantum group (in the sense of Kustermans) can be identified with a subalgebra of the completely bounded multipliers, and we show how this fits into our framework. Finally, this motivates a certain way of dealing with two-sided multipliers.
منابع مشابه
Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
متن کاملBessel multipliers on the tensor product of Hilbert $C^ast-$ modules
In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...
متن کاملControlled *-G-Frames and their *-G-Multipliers IN Hilbert C*-Modules
In this paper we introduce controlled *-g-frame and *-g-multipliers in Hilbert C*-modules and investigate the properties. We demonstrate that any controlled *-g-frame is equivalent to a *-g-frame and define multipliers for (C,C')- controlled*-g-frames .
متن کاملRepresentations of Multiplier Algebras in Spaces of Completely Bounded Maps
If G is a locally compact group, then the measure algebra M(G) and the completely bounded multipliers of the Fourier algebra McbA(G) can be seen to be dual objects to one another in a sense which generalises Pontryagin duality for abelian groups. We explore this duality in terms of representations of these algebras in spaces of completely bounded maps. This article is intended to give a tour of...
متن کاملGabor analysis, Rieffel induction and Feichtinger’s algebra as a link
We will show that Feichtinger’s algebra S0(R ) (also known as modulation space M 0 (R ) and well defined for general locally compact Abelian groups) is a natural Hilbert module for quantum tori and that a result by V. Losert can be interpreted as implying that the construction of such Hilbert modules gives Feichtinger’s algebra, if one considers the category of time-frequency invariant homogeno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 84 شماره
صفحات -
تاریخ انتشار 2011